Game team balancing by using particle swarm optimization
نویسندگان
چکیده
Game balancing affects the gaming experience of players in video-games. In this paper, we propose a novel system, team ability balancing system (TABS), which is developed for automatically evaluating the performance of two teams in a role-playing video game. TABS can be used for assisting game designers to improve team balance. In TABS, artificial neural network (ANN) controllers learn to play the game in an unsupervised manner and they are evolved by using particle swarm optimization. The ANN controllers control characters of the two teams to fight with each other. An evaluation method is proposed to evaluate the performance of the two teams. Based on the evaluation results, the game designers can adjust the abilities of the characters so as to achieve team balance. We demonstrate TABS for our in-house MagePowerCraft game in which each team consists of up to three characters. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
An improved particle swarm optimization with a new swap operator for team formation problem
Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملA Particle Swarm Optimization Based on Evolutionary Game Theory for Discrete Combinatorial Optimization
This paper presented a new particle swarm optimization based on evolutionary game theory (EPSO) for the traveling salesman problem (TSP) to overcome the disadvantages of premature convergence and stagnation phenomenon of traditional particle swarm optimization algorithm (PSO). In addition ,we make a mapping among the three parts discrete particle swarm optimization (DPSO)、 evolutionary game the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 34 شماره
صفحات -
تاریخ انتشار 2012